Memorandum Report

Determination of Physical Exposure of a Locatable Mineral on Segregated Lands:
Perdito Project, Enyo County, California

```
To: Carl Symons
Ridgecrest Field Office Manager
```


I concur: Matthew W. Shumaker
Chief Mineral Examiner

Certified Review Mineral Examiner No. 028 Washington Office, Division of Solid Minerals

Subject:

Determination of the physical exposure of a locatable mineral deposit on the following lode mining claims: EX 1, EX 2, EX 7, EX 8, EX 10, EX 11, MESA 3, MESA 13, MESA 26, CMP 1, CMP 2, CMP 4, CMP 5, CMP 6, CMP 7, CM 2, CM 4, CM 6, CM 8, CM 10, CM 12, CM 40, FAT 148, FAT 150, FAT 172, FAT 174, FAT 176.

Summary:

SSR Mining Inc. (formally Silver Standard Resources Inc.) has a pending plan of operations (CACA056495), referred to as the Perdito project, to complete exploratory drilling in the Conglomerate Mesa Area of the Inyo Mountains in Inyo County, California. The area encompassing the Perdito project has be segregated from entry under the mining law until December 28, 2018 (Federal Register vol. 81, No.249, p. 95738, Dec. 28, 2016). Pursuant to 43 CFR 3809.100(a) and section 8.1.1.2 of H-3809-1 (Surface Management Handbook), the Bureau of Land Management (BLM) completed a study to determine whether a physical exposure of a locatable mineral deposit existed prior to the date of segregation within the claims associated with the Perdito project. This report was prepared for documenting compliance with BLM regulations and BLM policy and is not to be used for any other purpose. No part of this report shall be interpreted as evidence regarding the validity of any mining claim examined.

Conclusions:

A physical exposure of a locatable mineral deposit existed on the subject claims as of the Dec. 28, 2016 segregation date. Evidence of mineralization consistent with sedimentary-hosted disseminatedreplacement type gold deposits (a.k.a Carlin-type deposits) were widely observed across the subject claim block. Assay data from five of six outcrop samples collected May 15-16, 2017 indicated anomalous (20 ppb or greater) concentrations of gold.

Recommendations:

It is recommend that the Ridgecrest Field Manager exercise the discretion allowed under 43 CFR 3809.100(b) and allow the operations proposed by SSR Mining Inc. in CACA-056495 to proceed without requiring a mineral examination and validity determination if the purpose of the segregation supports such a decision.

1.0 Introduction

1.1 Background: On December 4, 2015, Silver Standard U.S. Holdings Inc. (Operator - now SSR Mining Inc.) submitted a plan of operations (CACA-056495) to the Ridgecrest Field Office (RIFO) of the BLM. The proposed operation consists of completing seven exploratory drillholes, reopening and improving approximately two miles of access road, and subsequent site reclamation. The area of operations encompasses Public lands managed by the BLM in portions of sections 32 and 33 of T. 16 S. R. 39 E., MDM and portions of sections $3,4,9$, and 10 of T. 17 S., R. 39 E. MDM. The twenty-seven lode mining claims identified in the plan of operations are inventoried in Table 1 below:

Table 1: Mining claims identified in the Perdito project plan of operations

CLAIM NAME	SERIAL NUMBER	LOCATION DATE	GENERAL LOCATION
EX1	CAMC 306408	Jan. 3, 2013	S3, 4, 9 \& 10, T.17S., R.39E.
EX2	CAMC 306409	Jan. 3, 2013	S3 \& 4, T.17S., R.39E.
EX7	CAMC 306414	Jan. 3, 2013	S3 \& 10, T.17S., R.39E.
EX8	CAMC 306415	Jan. 3, 2013	S3,T.17S., R.39E.
EX10	CAMC 306417	Jan. 3, 2013	S3,T.17S., R.39E.
EX11	CAMC 306418	Jan. 3, 2013	S3,T.17S., R.39E.
MESA \#3	CAMC 264621	Sep. 2, 1994	S3 \& 10, T.17S., R.39E.
MESA \#13	CAMC 267107	Sep. 1, 1995	S3 \& 10, T.17S., R.39E.
MESA \#26	CAMC 264625	Sep. 3, 1994	S10, T17S, R39E
CMP 1	CAMC 280789	Dec. 19, 2002	S3, 4 \& 9, T.17S., R.39E.
CMP 2	CAMC 280790	Dec. 19, 2002	S4 \& 9, T.17S., R.39E.
CMP 4	CAMC 280792	Dec. 19, 2002	S4 \& 9, T.17S., R.39E.
CMP 5	CAMC 280793	Dec. 19, 2002	S9, T.17S., R.39E.
CMP 6	CAMC 280794	Dec. 19, 2002	S4 \& 9, T.17S., R.39E.
CMP 7	CAMC 280795	Dec. 19, 2002	S9, T.17S., R.39E.
CM 2	CAMC 267756	Dec. 2, 1995	S4, T.17S., R.39E.
CM 4	CAMC 267758	Dec. 2, 1995	S4, T.17S., R.39E.
CM 6	CAMC 267760	Dec. 2, 1995	S4, T.17S., R.39E.
CM 8	CAMC 267762	Dec. 2, 1995	S4, T.17S., R.39E.
CM 10	CAMC 267764	Dec. 2,1995	S4, T.17S., R.39E.
CM 12	CAMC 267767	Dec. 2, 1995	S4, T.17S., R.39E.
CM 40	CAMC 267787	Dec. 2, 1995	S10, T.17S., R.39E.
FAT 148	CAMC 269063	Mar. 16, 1996	S4,T.17S., R.39E.
FAT 150	CAMC 269065	Mar. 16, 1996	S4,T.17S., R.39E.
FAT 172	CAMC 293567	Oct. 14, 2008	S4,T.17S., R.39E.
FAT 174	CAMC 293565	Oct. 14, 2008	S32 \& 33, T.16S., R.39.E; S4,T.17S., R.39E. FAT 176 CAMC 293563

A map of the project area showing the location within the State of California is shown in Figure 1.

On December 28, 2016, the California State Office of the BLM published a notice of proposed withdrawal of approximately 1.34 million acres from location and entry under the Mining Law of 1872 (Federal Register vol. 81, No.249, p. 95738, Dec. 28, 2016). This notice also segregates the proposed withdrawal area for a period of two years, subject to valid existing rights. The area encompassing the segregated area includes the lands involved in the Perdito plan of operations. Pursuant to 43 CFR 3809.100(a) the Bureau of Land Management (BLM) may require the preparation of a mineral examination report before approving a plan of operations or allowing notice-level operations to proceed on segregated lands. BLM policy (Surface Management Handbook, H-3809-1, section 8.1.1.2) recommends that BLM Field Managers request evidence from the operator that a physical exposure of a locatable mineral deposit existed as of the segregation date. If the operator can show an exposure of a locatable mineral deposit was disclosed before the segregation date, the BLM manager may exercise discretion under 43 CFR 3809.100(a) on a case-by-case basis before deciding whether to approve a Plan of Operations without first conducting a mineral examination if the purpose of the segregation supports such a decision.

Criteria for establishing exposure on a lode claim is defined in Jefferson-Montana Copper Mines Co., 41 LD 320 (1912), which states in part that: 1) there must be a vein or lode of quartz or other rock in place; and 2) the vein or other rock-in-place must carry gold or some other valuable mineral. This report summarizes BLM's investigation and conclusion regarding the exposure of a locatable mineral deposit in the operational area of the Perdito plan of operations
1.1 Land Status: Review of Master Title Plats (MTPs) did not identify any encumbrances or closures to entry other than the segregation notice of December 28, 2016 (Appendix 1). Parts of Sections 9 and 10 of T. 17 S. R. 39 E. are within the Malpais Mesa Wilderness Area, but no part of the project area is within this Wilderness. A review of the BLM Legacy Rehost 2000 (LR2000) database has determined that all of the subject mining claims were located prior to the segregation date (Appendix 2). No conflicting lands actions were identified in any of the sections containing the subject claims (Appendix 2).
1.2 Access: The Perdito plan of operations area is accessed along existing paved and unpaved roads. From the junction of US Highway 395 and California Route 190 in Olancha, CA, proceed 14.5 miles northeast on CA 190 to the junction with CA Highway 136 to Lone Pine. Stay on CA 190 by turning southeast (right), and proceed nine miles to the junction with the unpaved Saline Valley Road. Follow the Saline Valley Road approximately northeast for nearly 6.6 miles to the Junction with BLM Road S4. Turn slightly left onto the BLM Road S4 and proceed approximately 6.5 miles. There will be an unmarked, unpaved road to the left and veering approximately west-southwest (a BLM road marker is at the junction), this is part of the original access road into the projected area and was developed during previous exploration efforts. This road can be driven approximately 1.7 miles to the eastern edge of the project area, corresponding to the western half of the EX 11 lode claim. Access to the proposed drilling sites is currently by foot only.
1.3 Physical Features: The Perdito Plan of Operations area is located in the southern Inyo Mountains and roughly centered on an uplift known as Conglomerate Mesa, an elevated plateau bordered by the Owens Valley on the west and by Lee Flat and the Nelson Range to the east. The late Cenozoic basaltic
lava field of Malpais Mesa are situated to the southeast of the Mesa. Elevations range from approximately 6,400 to 7,400 feet above mean sea level. Slopes range from gentle (less than 10 degrees) in the valley floors to nearly vertical at the summits of local peaks and mesas (Figure 1).

1.4 Field Work:

The claims were visited on May 15-16, 2017. The following individuals were present during the field visit (Table 2):

Table 2: Individuals participating in the field inspection of the Perdito project affiliated claims

Name of Individual	Title	Affiliation	Dates Present
Stephen Allen	Geologist, MEC ${ }^{1}$	BLM: California State Office	May 15-16, 2017
Angela Johnson	Geologist, P. Geo. ${ }^{2}$	SSR Mining Inc.	May 16, 2017
Randall Porter	Geologist	BLM: Ridgecrest Field Office	May 15-16, 2017
Michael Smith	Geologist, CME^{3}	BLM: California State Office	May 15-16, 2017

Fieldwork consisted of walking the entire length on the proposed access road, inspecting a representative selection of outcrops, and collecting selective outcrop samples for assay. Representative photographs and notes of outcrop inspections were archived. Reference points located consist of the southwest corner monument of the Mesa 26 lode claim and the southeast corner monument of the CMP 1 lode claim. The location of all reference points were recorded using GPS. Six of the seven proposed drill locations were identified in the field; the exception being proposed exploratory borehole number 5 . This proposed drill site was located at the end of a reclaimed, steeply sloping section of the planned access road and accessing by foot prior to road construction was determined too hazardous. Locations of the proposed drill holes and access road are shown in Figure 2.

An AutoCAD file of the subject claim-block boundaries was provided by the proponent, and is used in Figure 2 and all other maps showing the subject claim block. This AutoCAD file was modified in ArcMap GIS to display the subject lode claims only. Comparisons with a claim map prepared by a previous operator and with the previously mentioned field reference point indicated that this AutoCAD file was offset by less than 700^{\prime} to the north and approximately 400^{\prime} to the west. This file was subsequently adjusted to align with the reference points located in the field.

2.0 Geology, Mineralization and Mining History

2.1 Geology of the project area: A field geologic map was not prepared because a detailed geologic map of the Conglomerate Mesa area has been developed by Stone et. al. (2009) and published by the U.S.

[^0]Geological Survey. This map is partially reproduced in Figure 3, and the description of rock units provided by Stone et. al. (2009) is reproduced in Appendix 3. Field observations indicated that the map is generally accurate, but possible discrepancy in the Permian-Triassic boundary was observed in the western part of the project area (lode claim CM 4). In Figure 3, the map has been annotated to show the approximate claim boundaries and locations of samples collected May 15-16, 2017.

The geology of the Perdito project area reflects a history of multiple episodes of compression and extension of the Paleozoic to Mesozoic sediments. The predominant rock types mapped in the project area consist Permian-aged carbonates and shales and Triassic aged clastic sediments (Stone et. al., 2009). Pennsylvanian and Permian rocks deposited after the Antler Orogeny (early Mississippian) were subjected to compressional deformation beginning during the early Permian. Thrust faulting and folding formed a north-northeast-trending ridge called the Conglomerate Mesa Uplift. Lower and middle Permian rocks were deposited on the east flank of the resulting antiform. Subsequent episodes of deformation into the late Permian further elevated the Conglomerate Mesa Uplift, and several thousand meters of Permian carbonates, shales and sandstones accumulated against the uplift (Stone et. al., 2009).

Late Permian deformation and uplift was followed by deposition of the nonmarine, lower conglomerate member the Conglomerate Mesa Formation during the early Triassic. Clastic sedimentation was followed in the Early and Middle Triassic by regional subsidence of the continental margin and deposition of the marine shale, siltstone, sandstone, and limestone (Triassic Union Wash Formation) (Stone et. al., 2009). Locally, Quaternary aged alluvium deposits are present in drainages and Quaternary talus deposits occur at the base of slopes.

The north-trending segment of the proposed access road (Figure 2) roughly parallels a series of thrust faults that have locally overlain upper Permian rocks above Triassic clastic rocks (Figure 3). The main structural feature defining Conglomerate Mesa is the Malpais Fault described by Stone et. al. (2009). This fault strikes east-southeast and dips northward along this southern segment of the Mesa, but bends northward both east and west of Conglomerate Mesa into oblique strike-slip faults. Stone et. al. (2009) interpret the Malpais fault as the dislocation surface along which the structural block (the hanging wall) of Conglomerate Mesa moved down and northward relative to the footwall rocks outside. Late Cenozoic structural developments included the development of normal faulting associated with Basin-and-Range extensional tectonics. Faulting is considered the principle control on mineralization in the Perdito Project Area (Angela Johnson, SSR Mining Inc., personal communication, 2017).
2.2 Mineralization: The deposit has been described as a Carlin-type disseminated gold deposit (Angela Johnson, SSR Mining Inc., personal communication, 2017). This class of deposits are also generally referred to as hydrothermal disseminated-replacement type gold deposits, or sedimentary-hosted gold deposits. Characteristics of these deposits include gold-pyrite-silica association; exceedingly finegrained ore minerals; gold ore localized along high-angle faults and in brecciated sedimentary rocks, fine-grained silicification and argillization (Radtke, 1985). Visible gold is rare and base-metal minerals are very uncommon. Identified Carlin-type deposits in North America have median tonnage of 7.1 Mt
and median grade of $2.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and approximately 10 percent of all deposits also report silver grades ranging from <0.1 to >3.2 ppm (Berger et. al, 2014).

A frequent hydrothermal alteration indicator in sedimentary-hosted gold deposits silicification, which commonly takes the form of cryptocrystalline replacement of matrix material, microcrystalline jasperoid, and quartz stockwork veinlets and veins in fractures of altered host rocks (Li and Peters, 1998). This indicator is widely observed in the Perdito project area and is exposed in outcrop as finegrained silica replacement and multiple intrusions of thin, discontinuous veinlets ranging from hairline fractures to almost $1^{\prime \prime}$ thick. This silica veining and replacement is observed in both carbonate and clastic sedimentary outcrops. Examples of silicification-type alteration observed during fieldwork are illustrated in photographs 1 and 2.

In Carlin-type sedimentary-hosted deposits, micron-sized gold is found in association with pyrite, quartz, Fe-oxide, As-pyrite, and clay minerals (Berger et. al, 2014). Iron oxide staining likely resulting from the oxidation of pyrite was visible in outcrop, particularly in late Permian- early Triassic clastic rocks. Similar evidence of pyrite-oxidation was infrequently observed in carbonate rocks. Staining occurred as diffuse, discontinuous tan to red-brown coloration that was most visible on foliation planes in fissile shales. Photograph 3 shows an example of this alteration as observed in outcrop.

No indications of other types of mineralization were observed in the study area or identified by the proponent. The California State Wilderness Study report rated most of the area surrounding the Perdito project as having moderate potential for silver, lead, zinc and copper, and areas less than one mile to north as having moderate potential for gold, silver lead and zinc (Bureau of Land Management, 1990).
2.3 Mining History: Silver-lead-zinc deposits in Cerro Gordo Mining District in the southern Inyo Mountains, approximately five miles northwest of the Perdito Project area, were discovered during over the period 1861-1866. Total production from this district is estimated at approximately 73,000,000 lbs. lead, $24,000,000 \mathrm{lbs}$. zinc, and 4,600,000 oz. silver (Bureau of Land Management, 1990). More than half of the lead and about three-fourths of the silver were produced during the period from 1869 through 1876. Within this district, the Cerro Gordo mine was one of California's leading silver and lead producer during the late nineteenth century. Other metals produced included an estimated 2,000 ounces of gold, 12,000 tons of zinc and 300 tons of copper (Taylor and Joseph, 1993). Other historic workings in the Cerro Gordo District included the Estelle and Morning Star mines.

The historic Santa Rosa Mine is located approximately 4.4 miles south-southeast of the Perdito Project Area. Mining began in 1911 after the discovery of oxidized lead, copper, zinc and silver bearing veins in silicified Permian limestone the previous year. Documented ore grades from 1948 and 1949 assayed at 15 percent lead and 6 oz./ton silver (MacKevett, 1953). By 1953, total production from the Santa Rosa Mine was 36,854 short tons of ore consisting of $11,990,792$ pounds of lead, 487,347 pounds of copper, 4,105 pounds of zinc, 426,543 ounces of silver, and 478.7 ounces of gold (MacKevett, 1953). Patent was issued for six lode claims in the Santa Rosa claim group in 1922. The patented lands were donated back to the United States in 2004 and are now a parking area for visitors to the surrounding Malpais Wilderness Area (Randall Porter, BLM Ridgecrest Field Office, personal communication, 2017).

Talc was produced from replacement deposits in Ordovician dolomites near the junction of California Route 190 and the Saline Valley Road, approximately 15 miles south of the Perdito project area. High purity limestone deposits also occur in the vicinity, but their development was hindered by long transport distances to consumption centers (Hall and MacKevett, 1958).

Records of previous mining activities the Perdito project area are limited to past exploration projects. In October of 1996, BHP minerals submitted a Plan of Operations (CACA- 037380) to construct or improve nearly seven miles of access road and complete 85 exploratory boreholes. This Plan of Operations was authorized on June 30, 1997 and reclamation was completed in January 2007. Traces of the reclaimed access road can still be observed in the field, and this reclaimed road is being evaluated as one of the potential access route for the current proposal. Between 2007 and 2013, the Ridgecrest Field Office received two plans of operation (CACA- 054932 and CACA- 048889) and a notice (CACA-053189) for exploration in the Perdito project area. Both plans were withdrawn before approval and the incomplete notice expired without action. No indications of other past mineral development activity were observed during the field inspection.

3.0 Analytical data, sampling and sample analysis

3.1 Analytical data provided by the proponent: SSR Mining Inc. provided the results of 17 previously collected sample assays in response to a request from the Ridgecrest Field Manager. These samples were collected from outcrops near the proposed exploratory boreholes and were described as grab samples collected with a rock hammer (Angela Johnson, SSR Mining Inc., personal communication, 2017). The reported assay date is December 14, 2015, which predates the segregation order (December 28,2016). A partial reproduction (gold and silver only) of the assay results and a map of the sample locations are presented in Appendix 4^{4}. The data indicates that one of the assays (sample S167005) is from a sample outside of the Perdito project area, and is therefore not considered. In the remaining 16 samples, reported values for gold ranged from approximately 0 to 11 ppm and reported silver values range from approximately 0.4 and 4 ppm . Nine of the sixteen assays provided exceeded 2.9 ppm gold, which is the median grade of 118 Carlin-type sedimentary-hosted gold deposits studies by Berger et. al. (2014).
3.2 Sampling: Six chip samples for assay were collected during the field visit on May 15-16, 2017. Two of these samples were collected at locations chosen by the proponent's representative and the remaining four were collected at locations chosen by the Mineral Examiner. Most samples were collected near the vicinity of the proposed drill holes (Figure 3). All samples were taken in compliance with the BLM Handbook for Mineral Examiners (H-3890-1), page IV-1. Selected site locations were recorded using a Garmin eTrax GPS unit (accuracy 14 - 17')

Sites were selected, photographed before collection, measured and the surface cleaned to remove any loose material. A plastic tarp was placed below the sample location to prevent loss of sample material. The whiteboard was filled out and photographed at each sample site. The sample was taken with a rockhammer and chisel or a two-pound crack hammer. The rock chips were collected from the tarp and

[^1]placed in an $8^{\prime \prime} \times 11^{\prime \prime}$ polyurethane (PE) sample bag. A completed BLM form 3890-1 (Mineral Sample Record) was placed in each PE bag and the sample name was written on the bag in an indelible marker. The PE bag was then sealed with a numbered zip-tie and placed in a slightly larger ($91 / 2^{\prime \prime} \times 12^{\prime \prime}$) canvas bag. The site was again photographed showing the area sampled. After collection, all samples remained the possession of the author or were stored in a locked security room at the BLM California State Office until shipped to the assayers on May 23, 2017. Sample site locations, dates of collection and other pertinent data are summarized below in Table 3.

Table 3: Sample collection descriptions:

SAMPLE NAME	LOCATION	DATE	NOTES
BLM-CM-1	$\begin{gathered} 117^{\circ} 44.455^{\prime} \mathrm{W} \\ 36^{\circ} 28.58^{\prime} \mathrm{N} \end{gathered}$	5/15/17	Sample location chosen by BLM mineral examiner, MESA 13 lode-claim. Altered grey-beige colored fissile shale and sandstone of the Ps9 unit of Stone et. al. (2009). Visible alteration consisted of minor silica replacement and red-ochre colored staining diagnostic of iron-sulfide oxidation. See photograph 4 for a picture of the sample site.
BLM-CM-2	$\begin{gathered} 117^{\circ} 44.580^{\prime} \mathrm{W} \\ 36^{\circ} 28.528^{\prime} \mathrm{N} \end{gathered}$	5/15/17	Sample location chosen by BLM mineral examiner, MESA 3 lode-claim. Dark-grey to blackish grey micritic limestone. Extensive signs of silicification including thin ($1^{\prime \prime}$ or less) vein of silica with minor calcite and hematite. Unit corresponds to Ps10 of Stone et. al. (2009) and sample was collected just above contact with Ps9 unit. Sampling was complicated by disseminated silicification, which made the limestone particularly hard and well indurated. See photograph 5 for a picture of the sample site.
BLM-CM-3	$\begin{gathered} 117^{\circ} 44.871^{\prime} \mathrm{W} \\ 36^{\circ} 29.728^{\prime} \mathrm{N} \end{gathered}$	5/16/17	Sample location chosen by proponent's representative, FAT 176 lode-claim. Corresponds to unit Tcc of Stone et. al. (2009). Grey-brown to dark tan conglomerate, with a sandy matrix of approximately $60-70 \%$. Conglomerate clasts composed of limestone, quartzite, and siltstone. Primarily pebble sized clasts with few ($<10 \%$) cobble sized clasts. Alteration consists of silicification with minor sulfide emplacement. See photograph 6 for picture of sample site.
BLM-CM-4	$\begin{gathered} 117^{\circ} 44.830^{\prime} \mathrm{W} \\ 36^{\circ} 29.615^{\prime} \mathrm{N} \end{gathered}$	5/16/17	Sample location chosen by BLM mineral examiner, FAT 174 lode-claim. Corresponds to Psb12 unit of Stone et. al. (2009). Tan to reddish brown sandstone and siltstone with minor conglomerate. Sandstone is altered by silicification as evident by silica replacement in matrix and minor ($2^{\prime \prime}$ or less width) crosscutting veins of quartz. Iron oxide staining

			occurs along some joints. See photograph 7 for picture of sample site.
BLM-CM-5	$117^{\circ} 44.992^{\prime} \mathrm{W}$ $36^{\circ} 29.178^{\prime} \mathrm{N}$	$5 / 16 / 17$	Sample location chosen by BLM mineral examiner. CM 4 lode-claim. Reddish-tan to brown, massive sandstone to siltstone with thin, wavy bedding. Field observations of this outcrop are consistent with unit Tul of Stone et. al. (2009), but unit was mapped as Ps7 by these authors. Alteration consists of silicification. See photograph 8 for picture of sample site.
BLM-CM-6	$117^{\circ} 44.895^{\prime} \mathrm{W}$ $36^{\circ} 28.383^{\prime} \mathrm{N}$	$5 / 16 / 17$	CMP 5 lode mining claim. Sample location chosen by proponent's representative, who reported previous assays measured gold values of 4000 - 6000 ppb. Yellow-grey to grey fissile sandy shale corresponding to unit Ps9. Extensive oxidization staining observed on foliation faces. See photograph 9 for picture of sample site.

3.3 Analysis and results: All samples were analyzed by Skyline Assayers and Laboratories of Tucson, Arizona; an ISO/IEC 17025 accredited facility (certificate 2953.01). Samples were dried and weighted by the lab, and crushed to > 95\% passing 150 mesh. All samples were assayed for gold and silver. Gold was measured by fire assay and Atomic Adsorption (analytical limits: 5-3000 ppb) and silver measured by fire assay with gravimetric finish (analytical limits: 3-1000 ppm). Assay results were received from Skyline Assayers and Laboratories on July 5, 2017. The certificate of analysis prepared by Skyline Assayers and Laboratories are included in its entirety in Appendix 5, and the results are summarized in Table 4 below:

Table 4: Assay results for samples collected by BLM staff, Perdito Project May 15-16. 2017:

SAMPLE NAME	Gold (ppb)	Silver (ppm)
BLM-CM-1	188	<3
BLM-CM-2	<5	<3
BLM-CM-3	28	<3
BLM-CM-4	27	<3
BLM-CM-5	20	<3
BLM-CM-6	>3000	4

4.0 Discussion

Criteria for determination of physical exposure is outlined in the Jefferson-Montana Copper Mines Co. decision, 41 L.D. 320 (1912), which states in part: 1. there must be a vein or lode of quartz or other rock-in-place; and 2 . the quartz or other rock-in-place must carry gold or some other valuable mineral deposit. This decision does not define the values that must be detected in quartz or rock in place. SSR Mining Inc. considers assay values in excess of 20 ppb gold to be anomalous (Angela Johnson, SSR Mining Inc., personal communication, 2017). This value considerably exceeds published estimated of the background crustal concentration of gold ranging from 1-6 ppb (Taylor, 1964; Jones, 1972; Butterman and Amey, 2005).

Five of the six assays equal or exceed the 20 ppb anomaly threshold (Table 4). The highest gold concentrations (samples BLM-CM-1 and BLM-CA-6) are associated with the altered, light brown to ochre fissile Permian shales. In outcrop, these units display reddish to brown staining diagnostic of sulfide oxidation; suggesting the occurrence of gold in association with pyrite and arsenopyrite (Li and Peters, 1998). Concentrations of gold were lower in silicified conglomerates and sandstones (samples BLM-CM3, BLM-CM-4 and BLM-CM-5), but still equaled or exceeded the 20 ppb threshold (Table 4). Only one sample did not contain detectable gold (BLM-CM-2).

The occurrence of silver is reported in approximately 10 percent of sediment hosted gold deposits (Berger et. al., 2014). However, none of the samples contained significant concentrations of silver (Table 4).

5.0 Physical Exposure Determination

It is the professional opinion of the author that a physical exposure of a locatable mineral (gold) is present on the subject claims prior to the date of segregation from entry on December 28, 2016. Alteration consistent with Carlin-trend type sedimentary-hosted gold deposits is observed throughout the Perdito project area. This alteration consists primarily of silicification of the host rocks, with lesser sulfide emplacement and minor albitization, particularly in association with late Permian shales. Assays by the proponent completed one year prior to the segregation date exhibited concentrations of gold well in excess of crustal average (approximately $4-5 \mathrm{ppb}$). Assayed gold and silver values from samples collected by BLM during May 15-16, 2017 were generally lower than assay results provided by the proponent (Appendix 4), nevertheless, gold concentrations in five of these six assayed samples exceed both crustal average (approximately $4-5 \mathrm{ppb}$) and the proponent's criteria for anomalous concentration (20 ppb).

REFERENCES

Berger, V., Mosier, D., Bliss, J., and Moring, B., 2014, Sediment-hosted gold deposits of the worldDatabase and grade and tonnage models (ver. 1.1, June 2014): U.S. Geological Survey Open-File Report 2014-1074, 46 p., http://dx.doi.org/10.3133/ofr20141074.

Bureau of Land Management, 1990, California Statewide Wilderness Study Report., part 4, vol. 3
Butterman, W. and Amey, E., 2005, Mineral Commodity Profile - Gold: U.S. Geological Survey Open File Report 02-303, 72 p .

Hall, W., and MacKevett, E., 1958, Economic Geology of the Darwin Quadrangle, Inyo County, California: California Department of Natural Resources Division of Mines Special Report 51, 73 p.

Jones, R., 1972, Gold in Meteorites and in the Earth's Crust: U.S. Geological Survey Circular 603, 4 p.
Li, Z., and Peters, S., 1998, Comparative Geology and Geochemistry of Sedimentary-Rock-Hosted (Carlin Type) Gold Deposits in the People's Republic of China and in Nevada, USA: U.S. Geological Survey OpenFile Report Open-File Report 98-466, 160 p., https://pubs.usgs.gov/of/1998/of98-466/section/

MacKevett, E., 1953, Geology of the Santa Rosa Lead Mine, Inyo County, California: California Department of Natural Resources Division of Mines Special Report 34, 9 p.

Radtke, A., 1985, Geology of the Carlin Gold Deposits, Nevada: U.S. Geological Survey Professional Paper 1267, 122 p.

Stone P., Swanson, B., Stevens, C., Dunne, G., and Priest, S., 2009, Geologic Map of the Southern Inyo Mountains and Vicinity, Inyo County, California: U.S. Geological Survey Scientific Investigations Map 3094, 23 p.

Taylor, S., 1964, Abundance of Chemical Elements in the Continental Crust: a New Table: Geochimica et Cosmochimica Acta, vol. 28, p. 1273-1285.

Taylor, G., and Joseph, S., 1993, Mineral Land Classification of the Eureka-Saline Valley Area, Inyo and Mono Counties, California: California Department of Conservation Division of Mines and Geology Special Report No. 166, 149 p.
http://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=mlc

Figure 1: Location and topography of the proposed Perdito exploratory drilling project (Sources: SSR Mining Inc and California BLM State Office GIS).

Figure 2: Proposed layout of Perdito Project as specified in Plan of Operations CACA-056495. Proposed operations consist of developing 7 exploratory drillholes and reopening approximately 2 miles of previously reclaimed access road (Source: SSR Resources Inc. and BLM California State Office GIS).

Figure 3: Geology of the of Perdito Project area, adapted from Stone et. al. (2009). Refer to Appendix 3 for a discussion of map units. Green markers denote location of BLM sample points collected May 15-16, 2017.

PHOTOGRAPHS

Photograph 1: Outcrop of massive dark-grey Permian limestone along the proposed access road and near the boundary of the EX 10 and EX 11 lode claims. Silicification-type alteration is visible in the form of thin silica veinlets. Up-close observation indicates partial replacement of carbonate matrix with microcrystalline quartz or jasper. Photograph taken by BLM Geologist Michael Smith on May 15, 2017.

Photograph 2: Example of silicic alteration in clastic sedimentary units at the Perdito project site in Triassic (?) aged reddish-brown to grey silty sandstone. Numerous thin, crosscutting veins of silica with minor hematite can be observed. FAT 174 lode-claim. Photograph taken by BLM Geologist Michael Smith on May 16, 2017.

Photograph 3: Altered Permian shale observed in outcrop on the MESA 13 lode claim, north of the access road and approximately 10 feet west of the first sampling site (sample BLM-CM-1). The highly fissile yellow-beige shale brakes into irregular-shaped flat clasts roughly $1-4$ " in length. Iron oxide staining indicative of pyrite oxidation is frequently observed on fabric surface. A few thin ($1 / 2-1$ 1") veinlets of quartz and calcite crosscut the foliation planes at irregular intervals. Hammer in photograph is approximately 1^{\prime} in length. Photograph taken by BLM Geologist Michael Smith on May 15, 2017.

Photograph 4: Sample BLM-CM-1 location on the MESA 13 lode-claim. Grey-brown to beige colored shale displays certain features diagnostic of Carlin-type sediment-hosted deposits (silicification and sulfidation). Some thin ($1^{\prime \prime}$ wide or less) silica dikes cutting across laminae were observed in outcrop. Sample face was approximately 2^{\prime} long by 6 " wide and cut across fissile planes. Photograph taken by BLM Geologist Michael Smith on May 15, 2017.

Photograph 5: Sample BLM-CM-2 location on the MESA 3 lode-claim. Outcrop consists of dark-grey to grey micritic limestone altered by silicification and probably partial decarbonization. Corresponds to Ps10 unit (note contact with underlying Ps9 unit). Thin (1" or less thickness) veins of quartz cut approximately perpendicular to strike. Exposed rock was very hard which complicated sampling. Chip sample was collected across an approximately 2' x 1^{\prime} area. Photograph taken by BLM Geologist Michael Smith on May 15, 2017.

Photograph 6: Sample BLM-CM-3 location on the FAT 176 lode-claim. Sample location chosen by proponent's representative. Grey-brown to dark tan pebble-clast conglomerate, with an approximately $60-70 \%$ sandy matrix. Alteration consists of silicification with minor sulfide emplacement. Chip sample was collected across an approximately 4' x 1' area. Photograph taken by BLM Geologist Michael Smith on May 16, 2017.

Photograph 7: Sample BLM-CM-4 location on the FAT 174 lode-claim. Tan to reddish brown sandstone and siltstone with minor conglomerate. Alteration consists of silicification and minor sulfideemplacement inferred by the presence of minor amounts of iron oxides. Sample was collected over an approximately $3^{\prime} \times 8^{\prime \prime}$ area. Photograph taken by BLM Geologist Michael Smith on May 16, 2017.

Photograph 8: Sample BLM-CM-5 location on the CM 4 lode-claim. The geologic map prepared by Stone et. al. (2009) mapped this outcrop as light-grey massive fossiliferous limestone (unit Ps7) but the outcrop in the field was thin-bedded to massive reddish-tan to brown sandstone more consistent with unit Tul described by Stone et. al. (2009). This discrepancy possibly reflects inaccuracies in the mapping or GPS unit readings. Alteration consists of silicification, including the emplacement of small (1" width or less) silica veins. Photograph taken by BLM Geologist Michael Smith on May 16, 2017.

Photograph 9: Sample BLM-CM-6 location on the CMP 5 lode-claim. Yellow-grey to grey fissile sandy shale with iron oxide staining on foliation faces. Outcrop corresponds to unit Ps9 in Stone et. al. (2009). Sample collected perpendicular to foliation over a $25^{\prime \prime} \times 10^{\prime \prime}$ area to approximately $4^{\prime \prime}$ depth. Previous assays of this outcrop are reported to have exceeded 4000 ppb gold (Angela Johnson, SSR Mining Inc. Inc., personal communication, 2017). Photograph taken by BLM Geologist Michael Smith on May 16, 2017

APPENDIX 1:
MASTER TITLE PLATS
UNSURVEYED TOWNSHIP 16 SOUTH RANGE 39 EAST OF THE MOUNT DIABLO MERIDIAN, CALIFORNIA

TOWNSHIP 17 SOUTH RANGE 39 EAST OF THE MOUNT DIABLO MERIDIAN, CALIFORNIA

APPENDIX 2:

BLM-LR2000 GEO REPORT OUTPUT

H人 Loc Date
01／09／1997
 잉
$\stackrel{0}{0}$
흫

$\stackrel{0}{5}$ 흥 $\stackrel{\text {－}}{\stackrel{\circ}{0}}$ | io |
| :--- |
| $\stackrel{\text { o }}{0}$ |
| $\stackrel{\rightharpoonup}{0}$ | $\frac{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{0}}$ | 0 |
| :---: |
| |发 10／14／2008 10／14／2008

∞
$\stackrel{0}{N}$
$\stackrel{\rightharpoonup}{7}$

0
$\stackrel{0}{4}$

䓂

 ：芽范 | O |
| :---: |
| प्̦ |
| | o菷 $\stackrel{0}{0}$

 씀 씅 $\stackrel{\text { ․ }}{0}$ 씅 응 믕 믐 씅 믕 씅 민 $\stackrel{\text { ̈ㅡㅇ }}{\underline{\circ}}$
Lead File
CAMC271314
CAMC271314
CAMC271314
CAMC271314
CAMC271314
CAMC271314
CAMC271314
CAMC271314
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAAM293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMM293553
CAAC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMC293553
CAMM293553
CAMC293553

「Nヨ 7ヨON SNISNOO
 7قON SNISกOO
7ヨon SNISnOo
7ヨon SNISNOつ
「 Nヨ＾ヨヨ
N
ヨ＾ヨıS $\stackrel{\square}{ } \ddagger \mathrm{N} \forall \wedge$
ON SNISnOO
「Nヨ＾ヨı
ヨON SNISOOO
「Nヨ＾ヨı」
「 Nヨ＾ヨı
$7 \exists \mathrm{ON}$ SNISNOO
「Nヨ＾ヨı」
水
「Nヨ＾ヨıS $14 \exists \mathrm{~A}$
$7 \exists$ ON SNISnOつ
「 N \ddagger＾ヨ
「 Nヨ＾ヨı
「 Nヨ＾ヨı
「Nヨ＾ヨı

MTRS：
Serial Number
CAMC271324
CAMC271326
CAMC271328
CAMC271330
CAMC271332
CAMC271334
CAMC271336
CAMC271338
CAMC293553
CAMC293554
CAMC293555
CAMC293556
CAMC293557
CAMC293558
CAMC293559
CAMC293560
CAMC293561
CAMC293562
CAMC293563
CAMC293564
8

Claimant

7ヨon snisnoo Tヨonsnisnoo 7ヨON SNisnoo 7ヨon snisnoo COUSINS NOEL 7ヨON SNISNOJ COUSINS NOEL 7ヨON SNISNOO COUSINS NOEL COUSINS NOEL COUSINS NOEL 7ヨon Snisnoo 7ヨON SNISNOO $7 \exists \mathrm{ON}$ SNISกOO COUSINS NOEL $7 \exists \mathrm{ON}$ SNISNOO
\square

$$
\underset{\sim}{\sim}
$$

Claim Name FAT 199 FAT 186 $\stackrel{\stackrel{\infty}{\infty}}{\stackrel{+}{\overleftarrow{~}}}$
 AT 182

21 0160S 0390E 033

21 0160S 0390E 032

$$
\begin{aligned}
& \text { Quad } \\
& \text { SW,SE } \\
& \text { SW,SE } \\
& S W \\
& S W \\
& \text { SW } \\
& \text { NW,SW } \\
& S W \\
& N W, S W \\
& N E, N W \\
& N E \\
& N E
\end{aligned}
$$

MTRS：
$\frac{\text { Serial Number }}{\text { CAMC293566 }}$ CAMC306252
 N CAMC306272

 CAMC306281 CAMC306283 CAMC306284 CAMC306285 CAMC306286 CAMC306411 CAMC306412 CAMC306413 \circ
0
0
0
\sum_{0}
\sum_{i} $\overline{0}$
0
\sum_{0}
\sum_{0}
\sum_{0} CAMC306562 CAMC306564

11気侌侌佘侌気

7ヨon SNISno

Claimant

 N N | N |
| :--- |
| \sum_{0}^{0} |
| \sum_{0} | N CAMC293553

 Lead File
CAMC293553
CAMC306408

Claimant COUSINS NOEL
VAN ERT STEVEN J VAN ERT STEVEN J COUSINS NOEL VAN ERT STEVEN J EVEN J 1
Z_{0}
2
0
\vdots
0
0 VAN ERT STEVEN J
 $\stackrel{7}{2}$ COUSINS NOEL 1
0
0
0
\vdots
\vdots
0
0
0 1
0
0
2
0

0
0
0 ㅂ
0
0
0
0
2
2
0
0
0
0耑 COUSINS NOEL H
0
z
0
Z
0
0
0
0 u
0
2
0
2
0
0
0 u
0
2
2
z
0
0
0
0 $7 \exists \mathrm{ON}$ SNISOOO 7ヨon Snisnoo 7ヨON SNISnOO 7ヨON SNISnO○ u
0
0
2
0
2
2
0
0
0
0
0 7ヨON SNISNOO u
0
2
0
2
2
0
0
0 7 7BON SNISNOO

릉N $\stackrel{\infty}{\stackrel{\infty}{\dot{\gtrless}}} \stackrel{\infty}{\stackrel{\infty}{\stackrel{~}{4}}}$

FAT 174
FAT 197
FAT 195 FAT 193

 ふ ふ ふ ふ ふ $3 \geq$ MS $M S$
$M S$ MS sw SW
NW NW SW，SE SW，SE SE SW，SE
SE u
3
2
2
2
2 NE，SE NE NE，NW ${ }_{2}^{3}$ щ 른山 山

Serial Number CAMC293559
CAMC293561
CAMC293563

CAMC293565
CAMC293569
CAMC293570
CAMC293571
CAMC306411 CAMC306412 CAMC306413 ©
$\stackrel{+}{0}$
\sum_{0}

\sum_{0} | N్ |
| :--- |
| O |
| \sum_{0} |
| \sum_{0} | CAMC306431 CAMC306432 CAMC306434 CAMC306435 CAMC306436

 CAMC306438 CAMC306439 CAMC306440 CAMC306441 CAMC306442
 0
0
0
0
0
\vdots
\vdots
0
0
0
LLOZ/9Z/G0 :ərea uny
UNITED STATES DEPARTMENT OF THE INTERIOR

	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{N}{\underset{\sim}{c}}$	$\stackrel{\hat{N}}{\hat{N}}$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{\stackrel{N}{N}}{ }$	$\stackrel{\text { N}}{\text { N}}$
	O $\stackrel{\circ}{\mathrm{N}}$ N 응		$\begin{aligned} & \circ \\ & \stackrel{0}{N} \\ & \text { N } \\ & \frac{0}{\Gamma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{N}{N} \\ & \text { N} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & \text { N } \\ & \text { N} \\ & \text { ल్ర } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \text { N } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \\ & \text { N} \\ & \text { ल్ర } \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{0}{N} \\ & \stackrel{y}{\circ} \\ & \stackrel{0}{0} \end{aligned}$		
		$\underset{\substack{\text { © }}}{\underset{\sim}{\infty}}$		$\stackrel{\stackrel{1}{2}}{\substack{0 \\ \hline}}$		$\underset{\substack{\text { © }}}{\stackrel{y}{0}}$	$\underset{\substack{\mathrm{O}}}{\stackrel{\text { ® }}{2}}$		$\underset{\substack{\text { ¢ }}}{\text { ¢ }}$	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	$\underset{\substack{\text { ¢ }}}{\text { ¢ }}$

聞合言
気

Lead File
CAMC306557
CAMC306557
CAMC306557
CAMC306557
CAMC312844

Lead File | \bar{N} |
| :--- |
| $\stackrel{+}{\circ}$ |
| \sum_{0} |
| $\sum_{<}$ |

 듣 $\underset{\sim}{ }$ 人

 Lead File
CAMC267098
CAMC267755
CAMC267755
CAMC267755
CAMCC27755
CAMC268916
CAMC268916
CAMC280789
CAMC292567
CAMC292567
CAMC293553
CAMC293553
CAMC293553
CAMCC93553
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMCCO6408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMC306408
CAMCCO6408
CAMC306408

 \sum_{U}^{N} $\sum_{0}^{m} \sum_{0}^{m}$ $\sum_{0}^{\infty} \sum_{0}^{0}$

 $\sum_{0}^{-} \stackrel{m}{山}$ FAT 193 FAT 191
獃
MTRS：
Serial Number
CAMC267107
CAMC267776
CAMC267778
CAMC267780
CAMC267805
CAMC269062
CAMC269064
CAMC280789
CAMC292569
CAMC293571
CAMC293572

CAMC306408 | 0 |
| :--- |
| |
| 0 |
| 0 |
| \sum_{0} |
| 0 | CAMC306410 CAMC306414 CAMC306415 CAMC306416 CAMC306418 CAMC306419 CAMC306420 CAMC306421 N N

©
©
$\sum_{<}$
\sum_{0} CAMC306424 CAMC306425僉

0

島苟｜

 LODE 릉 응 응 븡 응 LODE $\xrightarrow{\text { u }}$ 응 릉 븡 름 $\stackrel{\text { 쁠 }}{0}$ 응 $\stackrel{\text { 山 }}{0}$
\qquad
CAMC308953
CAMC308953

Claimant

\square
 $\sum_{\bar{\omega}}^{N}$

山 山
뮹山 山山 ய ш
 NE
 $\underset{z}{\text { 山 }}$ NE NE 를山 SW sw sw
MTRS：Serial NumberCAMC306445 CAMC306447 CAMC306448 CAMC306449 0
0
0
\sum_{0}
0

0 | $\overline{5}$ |
| :--- |
| \sum_{0}^{0} |
| \sum_{0}^{0} | N

N
©
\sum_{0}

\sum_{0} CAMC306453 | U |
| :--- |
| |
| |
| | CAMC306455

\circ
0_{4}
0_{0}
\sum_{i}

Serial Number
CAMC267755 CAMC267756 CAMC267757 CAMC267758 CAMC267760 CAMC267761

 FAT 173 FAT 172 FAT 171
 FAT 191
 ふ ふ ふ い

\qquad身

\qquad
\qquad

\qquad CAMC308953
CAMC308953 \qquad
 CAMC267098 CAMC267098

 CAMC267098 R CAMC267755 | n |
| :--- |
| $\stackrel{N}{N}$ |
| |
| |
| \sum_{0} |
| 0 | CAMC267755

CAMC268916 CAMC268916
 o D
$\stackrel{0}{0}$
\sum_{0}^{0}
\sum_{0} ® CAMC280789

21 0170S 0390E 004

山 ய
$\begin{aligned} & \text { SE } \\ & \text { SW，SE }\end{aligned}$
$\begin{aligned} & \text { SW，SE } \\ & \text { NE，NW，SW，SE }\end{aligned}$
～
NE，NW
NE，NW
NE，NW
NE，NW
Nw
$\frac{3}{2}$
山 ́ㅡㄹ
$\stackrel{\text { 山 }}{\sim}$ Quad
SW
SW
NW，SW
NW
SE
SE
SE
SE
SE MTRS：

Serial Number CAMC267098 CAMC267100 CAMC267101 CAMC267102 CAMC267103 CAMC267104 | ® |
| :--- |
| $\stackrel{0}{N}$ |
| \sum_{0} |
| |

 CAMC267767 CAMC267768 CAMC267769 CAMC267770 CAMC267771 CAMC269076 CAMC269077 CAMC280789 CAMC280790

Claim Name
CMP 6
CMP 7
MP 8
MP 9
MP 10
MP 11
MP 15
MP 16
MP 17
FAT 163
FAT 164
FAT 165
FAT 166
FAT 168
FAT 167
IN 14
EX 1
CAMC293577
CAMC293578
CAMC306243 CAMC306408
MTRS：

Quad
NE
$N E, S E$

SE
SW，SE
SE
SW
SW
SW
NW
NW
NW，SW \sum_{2}^{3} sW sW SW sw 3山

苟

\qquad
 릉 CAMC286713 LODE CAMC293553 LODE CAMC293553 LODE CAMC293553 LODE CAMC293553 LODE 릉 릉

21 0170S 0390E 010

$$
\begin{aligned}
& \text { VAN ERT STEVEN J } \\
& \text { VAN ERT STEVEN J } \\
& \text { VAN ERT STEVEN J } \\
& \text { VAN ERT STEVEN J }
\end{aligned}
$$

$\xrightarrow{\text { Claimant }}$ | ∞ |
| :--- |
| $\stackrel{\circ}{\circ}$ |
| $\stackrel{0}{0}$ |
| $\sum_{<}$ |
| | o

$\stackrel{0}{\circ}$
$\stackrel{0}{0}$
\sum_{0}

Wาg 人a GヨaNヨiNI ION Sヨ

$$
\begin{aligned}
& \text { Claim Name } \\
& \text { MESA \#3 } \\
& \text { MESA \#23 } \\
& \text { MESA \#24 } \\
& \text { MESA \#26 } \\
& \text { MESA \#4 } \\
& \text { MESA \#5 } \\
& \text { MESA \#6 }
\end{aligned}
$$

MTRS：
晾 CAMC267107
CAMC267108 ${ }^{\circ}$ ®
$\stackrel{0}{0}$
\sum_{0}^{0}
0 CAMC267789
 CAMC267808 0
0
0
0
0
\sum_{0}
0 \circ
0
0
0
0
\sum_{0}^{0}

 $\underset{\substack{0}}{ \pm}$
\sum_{0}^{0}
\sum_{i}^{0}
 N
©
N
\sum_{0}
 N
N
N
N
\sum_{i} CAMC286721 CAMC292567 CAMC292568
Run Date: 05/26/2017
Page 11 of 11
島

∞	∞	∞
\sum	$\stackrel{\infty}{\Sigma}$	$\frac{0}{2}$

 를 피

05/26/2017
Page 1 of 1
0
0
0
0
0
0
증
0
0
0
4

힝
0
0
0

RUN TIME: Adm State:	12:27 PM CA			TED ST GURE GEOG	DEPA F LAN IIC RE d by Se	TMENT OF MANAGE RT WITH al Number	INTERIOR MENT LAND		
Serial Number: Total Case Acres:		$\begin{gathered} \text { CACA } 035093 \\ 32,008.000 \end{gathered}$						Suff	Subdivision
Casetype	Case Disp	21	0170 S	0390E	Sect	Sur Typ	Sur Num		
231106	AUTHORIZED				$\begin{aligned} & 009 \\ & 010 \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & \mathrm{FF} \end{aligned}$			POR SESW; POR S2;
Serial Number: Total Case Acres:		$\begin{aligned} & \text { CACA } 056495 \\ & 5.000 \end{aligned}$						Suff	
Casetype	Case Disp	21	0170 S	0390E	Sect	Sur Typ	Sur Num		Subdivision
380910	PENDING				$\begin{aligned} & 003 \\ & 004 \\ & 009 \\ & 010 \end{aligned}$	$\begin{aligned} & \text { ALIQ } \\ & \text { ALIQ } \\ & \text { ALIQ } \\ & \text { ALIQQ } \end{aligned}$			S2SW; W2E2; N2NW;
Serial Number: Total Case Acres:		CACA $\mathbf{1 , 3 3 7 , 9 0 4 . 0 0 0}$						Suff	
Casetype	Case Disp	21	0160 S	0390E	Sect	Sur Typ	Sur Num		Subdivision
231145	PENDING				$\begin{aligned} & 032 \\ & 033 \end{aligned}$	$\begin{aligned} & \text { ALL } \\ & \text { ALL } \end{aligned}$			ENTIRE SECTION ENTIRE SECTION
Serial Number: Total Case Acres:		CACA 057064 1,337,904.000							
Casetype	Case Disp	21	0170 S	0390E	Sect	Sur Typ	Sur Num	Suff	Subdivision
231145	PENDING				003	ALL			entire section
					004	ALL			ENTIRE SECTION
					009 010	FF			WITHIN; WITHIN

APPENDIX 3

GEOLOGIC UNITS
press). Older parts of unit predate Tertiary basalt (unit Tb); younger parts postdate the basalt. Some deposits contain basalt clasts. Unit includes the fanglomerate of Slate Canyon and the fanglomerate of Bonham Canyon of Stone and others (2004), which contain ash beds dated as late Miocene (about 9 to 6 Ma) and middle Miocene ($13.6 \pm 0.5 \mathrm{Ma}$), respectively (A.M. Sarna-Wojcicki, written commun., in Stone and others, 2004; Conrad, 1993). Includes the following subunit:
QTas Silt beds (Quaternary or Tertiary) -Weakly consolidated beds of grayish-white silt that interfinger with dissected deposits of alluvial gravel (unit QTa). Present only in a small area on west side of the Inyo Mountains; interpreted as lake deposits (Swanson, 1996). Local stratigraphic and structural relations indicate that the silt beds and the interfingering alluvium are younger than adjacent Tertiary fanglomerate (unit Tf) and basalt (unit Tb) (Swanson, 1996)
QTr Rubble (Quaternary or Tertiary)—Weakly consolidated deposit of unsorted, angular clasts of reddish-brown conglomerate and sandstone. Possibly the remnants of an ancient landslide deposit derived from nearby altered (jasperized) member C of the Conglomerate Mesa Formation (kcc)
Tb Basalt (Tertiary)—Basalt flows, dikes, and pyroclastic rocks. Flows and dikes consist of dark-gray basalt that typically contains small phenocrysts of olivine, plagioclase, and augite in an aphanitic groundmass. Some flows are amygdaloidal and vesicular. Pyroclastic rocks, most of which locally underlie the basalt flows, consist of brown, yellowish-brown, reddish-brown, and reddish-purple tuff, lapilli tuff, tuff-breccia, and agglomerate. Described in more detail by McAllister (1956), Hall and MacKevett (1962), and Stinson (1977). Probably early Pliocene and latest Miocene in age. K-Ar ages of two basalt flows in the map area are 5.4 ± 0.2 and $4.3 \pm 0.5 \mathrm{Ma}$; K-Ar age of another flow just south of the area is $6.7 \pm 0.6 \mathrm{Ma}$ (all K-Ar ages by Larsen, 1979)
Tf Fanglomerate (Tertiary)—Firmly consolidated deposits of locally derived gravel and sand that demonstrably underlie Tertiary basalt (unit Tb). Mapped only on west side of the Inyo Mountains, where the deposits typically have a distinctive grayish-yellow to yellowish-orange color. Maximum exposed thickness about 40 m (Swanson, 1996). Probably correlative with deposits in the lower part of unit QTa, and also with deposits of the Coso Formation that predate latest Miocene (~ 5.5 to 6 Ma) volcanic rocks in the Coso Range, 3 to 15 km south of the map area (Bacon and others, 1982)

INTRUSIVE ROCKS AND VEINS

q Quartz veins (Cenozoic or Mesozoic)—Veins cutting Mississippian rocks near Cerro Gordo
KJg Leucocratic granite (Cretaceous or Jurassic)—Light-colored, medium-grained biotite granite. Forms small masses in western part of map area
KJdi Diorite (Cretaceous or Jurassic)—Biotite-hornblende diorite spatially associated with leucocratic granite (KJg)
KJf Younger felsite intrusions (Early Cretaceous or Late Jurassic)—Light-colored, aphanitic to very fine grained intrusions, primarily dikes, composed of microcrystalline feldspar, quartz, and minor muscovite; locally spherulitic. Locally cuts dark-colored dikes (Jd). One dike in map area has a U-Pb (zircon) minimum age of about 140 Ma (Dunne and Walker, 1993; Stone and others, 2004)
Jd Dark-colored dikes (Late Jurassic?)—Dark-gray, greenish-gray, and reddish-brown, porphyritic dikes, probably of dioritic composition. Composed of 10 to 50 percent plagioclase, hornblende, and pyroxene phenocrysts mostly 1 to 3 mm long in a microcrystalline groundmass. Both phenocrysts and groundmass are altered. Dikes are mostly 1 to 5 m wide; a few are as much as 50 to 100 m wide. Undated in map area, but provisionally considered part of the regionally extensive Independence dike swarm of Late Jurassic age
Jdv Deformed intrusions of variable composition (Late to Middle Jurassic?)—Light-gray to
greenish-gray, aphanitic to medium-grained porphyritic intrusive masses of intermediate to mafic composition. May incorporate more than one suite of intrusions. Commonly deformed by boudinage, cleavage, and shearing (Swanson, 1996)
Jmh Mafic hypabyssal intrusion (Late to Middle Jurassic?)—Large, discordant mass intrusive into lower and middle parts of the Inyo Mountains Volcanic Complex
Jad Altered diorite (Late to Middle Jurassic?)—Variably sheared greenish-gray to reddishbrown, medium- to very fine grained hornblende(?)-biotite diorite and quartz diorite. Moderately to intensely altered to mixtures of white mica, chlorite, iron oxides, and hydroxides
Jh Hunter Mountain Quartz Monzonite (Middle to Early Jurassic)—Medium- to coarsegrained quartz monzonite. Typically contains 25 to 45 percent orthoclase, 35 to 55 percent plagioclase, 10 to 20 percent quartz, 3 to 20 percent mafic minerals (primarily hornblende), and accessory magnetite and sphene (McAllister, 1956). Part of composite Hunter Mountain Batholith, which Dunne and others (1978) reported to have an age range of about 167 to 185 Ma
Jf Older felsite intrusions (Jurassic?)—Light-colored, aphanitic to fine-grained felsite. Composed of microcrystalline to fine-grained feldspar and rare to abundant quartz; plagioclase phenocrysts 0.5 to 3 mm long are present locally. Primarily forms sills as wide as 230 m , but also forms discordant plutons
$\mathrm{Ji} \quad$ Altered fine-grained intrusions (Jurassic?) —Brown to brownish-orange, highly altered and weathered intrusive rocks. Aphanitic to fine-grained; composed of sericitized plagioclase, altered pyroxene or hornblende, quartz, and abundant opaque minerals; contains phenocrysts less than 2 mm in diameter. Original composition probably dioritic
Jmp Hornblende monzodiorite to monzonite porphyry (Jurassic?)—Quartz-poor porphyritic rocks that form discordant intrusions near the Cerro Gordo Mine. Composed of about 80 percent phenocrysts 1 to 10 mm long in a dark, fine-grained groundmass of potassium feldspar, hornblende, minor quartz, and alteration minerals. Phenocrysts are dominantly plagioclase, less abundant hornblende, and rare pink potassium feldspar. Overall composition is 50 to 70 percent plagioclase, 10 to 35 percent potassium feldspar, 15 to 25 percent hornblende, and less than 5 percent quartz (Stone and others, 2004)

SEDIMENTARY AND VOLCANIC ROCKS

Jiv Inyo Mountains Volcanic Complex (Jurassic)—Lithologically heterogeneous volcanic and volcanogenic sedimentary rocks (Merriam, 1963; Dunne and Walker, 1993; Dunne and others, 1998; Stone and others, 2004). Undivided where exposed in narrow fault slivers. Elsewhere, divided into the following subunits:
Jivu Upper part (Late and Middle Jurassic)—Volcanogenic sandstone, siltstone, and conglomerate; rare calcareous strata; and welded tuff and lava flows. Thickness about 400 m with top not exposed
Jivm Middle part (Middle Jurassic)—Silicic crystal-lithic welded ash-flow tuff; less abundant andesite and rhyolite lava flows; and subordinate volcanogenic sandstone and conglomerate. Thickness about 300 m
Lower part (Middle or Early Jurassic?)—Volcanogenic sandstone, conglomerate and breccia in laterally variable proportions; less abundant basaltic lava flows; and rare felsic tuff. Stratigraphic relations at base of unit generally obscured along faulted contact with the Union Wash Formation. Thickness about 450 m . Unit includes: mostly limestone clasts in the lower part and mostly volcanic-rock clasts in the upper part
Union Wash Formation (Middle? and Early Triassic)—Fine-grained marine sedimentary rocks that include shale, siltstone, sandstone, and limestone (Stone and others, 1991,
2004). Equivalent to unnamed Triassic strata of Merriam (1963) and Stone and others (1989). Divided into the following members:

Upper member (Middle? and Early Triassic)——ivided into the following subunits:
Kuu4 Subunit 4-Consists primarily of brown- to yellowish-brown, thin-bedded quartzose siltstone and shale. Upper part contains limestone and dolomite. Thickness 200 to 300 m. Unit includes:

Is Limestone-Medium- to dark-gray, micritic and locally oolitic limestone. Forms a bed 4 to 20 m thick that locally is structurally repeated by folding and faulting
Kuu3 Subunit 3—Dark-gray, ledge-forming micritic limestone. Forms planar beds 1 to 5 cm thick separated by thin partings of light-brown siltstone or mudstone. Thickness 75 to 95 m
Kuu2 Subunit 2-Gray, purplish-gray, brownish-gray, and brown quartzose siltstone to very fine grained sandstone and light- to medium-gray limestone; basal 10 m consists of yellow shale. Thickness 80 to 100 m
Kuu1 Subunit 1—Dark-gray micritic limestone; forms massive ledge. Average thickness about 10 m
Kum Middle member (Early Triassic)—Yellow shale and medium-gray, thin-bedded micritic limestone. Most parts of member consist primarily of shale and widely spaced limestone interbeds; includes a few limestone-dominated intervals as much as 25 m thick. Uppermost 40 to 50 m is a marker zone of bright yellowish-brown shale. Thickness 200 to 300 m
Kul Lower member (Early Triassic)—Gray to brown, silty to sandy limestone and calcareous siltstone to fine-grained sandstone. Characterized by thin, planar to wavy bedding, distinctive nodular texture, and local presence of minute black gastropod casts. Forms resistant crags and hogbacks. Thickness generally 30 to 40 m . Locally includes:
Kuls Basal sandstone unit-Yellowish-gray, fine-grained, calcareous sandstone and siltstone, and subordinate dark-gray mudstone. Maximum thickness about 40 m Owens Valley Group (Early Triassic to Cisuralian)—Lithologically diverse marine and nonmarine sedimentary rocks (Merriam and Hall, 1957; Merriam, 1963; Stone and Stevens, 1987; Stone and others, 1989, 2000, 2004). In map area, consists of the following units:
Conglomerate Mesa Formation (Early Triassic and Lopingian)—Conglomerate, sandstone, and minor limestone (Stone and Stevens, 1987; Stone and others, 1989, 2000, 2004). In type area, 1 km north of the map area, formation consists of three members (C, B, and A in descending order); Stone and Stevens, 1987; Stone and others, 2000). In map area, only members C and B are recognized:
Kcc Member C (Early Triassic)—Gray to brown, thick-bedded pebble and cobble conglomerate and subordinate fine- to coarse-grained sandstone. Conglomerate clasts composed of limestone, quartzite, gray chert, and siltstone. Probably nonmarine. Age based on conformable contact with overlying Union Wash Formation (Stone and others, 2000). Thickness 10 to 150 m
Pcb Member B (Lopingian)—Light-gray, thick-bedded sandy and pebbly limestone. Forms lenticular exposures along the northern and eastern base of Conglomerate Mesa. Shallow-water marine. Age based on ammonoids, brachiopods, and conodonts in type area (Stone and others, 2000). Maximum thickness in map area about 10 m
RPs Sandstone and chert-pebble conglomerate (Early Triassic or Permian)—Unit locally present below rocks mapped as member C of the Conglomerate Mesa Formation (Kcc) and above rocks mapped as unit 12b of the sedimentary rocks of Santa Rosa Flat (Ps12b). Probably nonmarine. Maximum thickness about 30 m
Psu Sedimentary rocks of Santa Rosa Flat (Guadalupian? and Cisuralian) Heterogeneous sequence composed of sandstone, siltstone, limestone, limestone conglomerate, and shale (Magginetti and others, 1988; Stone and others, 1989). Present in eastern part of map area. Includes some rocks previously mapped as Bird

Spring(?) Formation by McAllister (1956). Mapped as an undivided unit (Psu) in a few small areas that were not studied in detail. Elsewhere, divided into the following subunits:
Unit 12 (Guadalupian or Cisuralian)—Composed primarily of fine-grained clastic rocks. Probably nonmarine. Thickness 120 to 300 m . Divided into the following subunits:
Ps12b Unit 12b—Yellow shale; yellowish-brown to brown, calcareous siltstone and finegrained sandstone; minor gray to bluish-gray, pebbly limestone; and rare brownweathering, chert-pebble conglomerate. Pebbly limestone is lithologically similar to rocks of the locally underlying limestone conglomerate unit (Psc), but limestone clasts are generally smaller. Commonly overlies unit 11 (Ps11); locally overlies unit 12a (Ps12a)

Unit 12a-Maroon and greenish-gray shale
Ps11 Unit 11 (Guadalupian or Cisuralian)—Brown, yellowish-brown, and reddish-gray, fine- to coarse-grained sandstone, siltstone, and subordinate conglomerate. Probably nonmarine. Thickness 200 to 250 m
Psc Limestone-clast conglomerate (Guadalupian or Cisuralian)—Medium- to darkgray, massive conglomerate composed of poorly sorted, tightly to loosely packed, angular to subangular limestone clasts 1 to 20 cm in diameter and rare angular chert pebbles in a matrix of fine-grained, silty limestone. Probably nonmarine. Locally overlies unit 10 (Ps10). Maximum thickness about 60 m
Ps10 Unit 10 (Guadalupian? and Cisuralian)—Medium-gray micritic to bioclastic limestone in which marine fossils are locally abundant. Shallow-water marine. Fusulinids suggest a Roadian or Leonardian age (Stevens and Stone, 2009c); brachiopods suggest a Leonardian or younger age (Hall and MacKevett, 1962). Unit also contains bryozoa, gastropods, and corals. Maximum thickness about 40 m
Ps9 Unit 9 (Cisuralian)—In southern part of map area, composed primarily of yellow shale. In northern part of area, composed of gray shale, ochre to brown calcareous siltstone to fine-grained sandstone, and minor silty, bioclastic limestone in which fusulinids are locally abundant and corals are sparse. Probably mostly if not entirely marine. Fusulinids indicate a Leonardian age (Magginetti and others, 1988; Stevens and Stone, 2009c). Unit thickness 75 to 300 m . In northern part of area, includes the following subunit:
Ps9s Predominantly siltstone and fine-grained sandstone
Graded limestone unit (Cisuralian)—Thick, stratigraphically and structurally complex unit primarily characterized by medium- to dark-gray, bioclastic and conglomeratic limestone in beds that range from 5 cm to more than 1 m thick. Graded beds, which suggest deep-water deposition by turbidity currents, predominate. Limestone, which contains abundant echinodermal debris, fusulinids, shell fragments, coral fragments, and bryozoans, is interbedded with variable proportions of maroon, brown, ochre, and gray calcareous mudstone and siltstone. Fusulinids suggest a Leonardian to late Wolfcampian age (Stone, 1984; Stevens and Stone, 2009a). Previously considered part of unit 8 (Stone and others, 1989). Divided into the following subunits:
Psg3 Subunit 3-Exposed northeast of Conglomerate Mesa. Predominantly thinbedded, gray, calcareous mudstone and ochre to brown, calcareous siltstone and finegrained calcareous sandstone; minor dark-gray, mostly fine grained, graded limestone beds generally less than 30 cm thick. Fusulinids and other bioclasts are present in the coarsest limestone beds. Fusulinids suggest a Leonardian to late Wolfcampian age (Stone, 1984). Depositionally overlies unit 7 (Ps7) on a sharp, but concordant, contact; gradationally overlain by unit 9 (Ps9). Unit thickness uncertain because of faulting, but probably about 425 m

Subunit 2—Exposed southeast of Conglomerate Mesa. Structurally overlies unit 6 (Ps6) and subunit 1 of the graded limestone unit (Psg1) on the Malpais Fault;
structurally overlain by unit 9 (Ps9) on another fault. Stratigraphic relation to subunits 1 and 3 (Psg1 and Psg3) is uncertain. Fusulinids suggest a Leonardian age (Stone, 1984). Further divided into the following subunits, which form an apparently concordant depositional sequence estimated to be as much as $2,400 \mathrm{~m}$ thick:

Subunit 2d-Ochre to maroon calcareous mudstone, siltstone, and fine-grained sandstone, interbedded with equally to slightly less abundant graded beds of dark-gray limestone. Fusulinids are present locally in the limestone. Gradationally overlies subunit 2c (Psg2c). Maximum exposed thickness about 600 m

Subunit 2c—Dark-gray, graded limestone beds. Beds are thick and coarse grained (in part conglomeratic) in lower part of subunit, becoming thinner and finer grained up section. Crinoid debris and intraclasts are abundant; fusulinids and corals are present locally. Gradationally overlies subunit 2b (Psg2b). Estimated thickness about 600 m

Subunit 2b—Dark-gray, thick-bedded to massive, coarse-grained to conglomeratic limestone; includes some graded beds. Sharply overlies subunit 2a (Psg2a). Estimated thickness about 450 m

Subunit 2a-Dark-gray, thick, graded bioclastic limestone beds that locally contain fusulinids. Base faulted. Estimated exposed thickness about 750 m

Subunit 1—Exposed south and southwest of Conglomerate Mesa. Predominantly dark-gray, graded limestone beds typically between 10 and 75 cm thick. Limestone beds are richly bioclastic and commonly contain abundant fusulinids. Matrixsupported limestone-clast conglomerate beds interpreted as submarine debris-flow deposits locally are as much as 7 m thick. Maroon to ochre calcareous siltstone and mudstone are present in varying amounts and are most abundant in the lower part of the subunit. Basal beds of subunit depositionally overlie rocks questionably assigned to unit 6 (Ps6); uppermost beds are stratigraphically overlain by unit 9 (Ps9). Fusulinids suggest that most of unit probably is of late Wolfcampian age; uppermost part is Leonardian (Stone, 1984). Subunit is at least 500 m thick and may be in excess of $1,000 \mathrm{~m}$ thick, but disruption by faults precludes an accurate estimate of thickness
Ps8 Unit 8 (Cisuralian)—Medium- to dark-gray, fossiliferous limestone, interbedded with subordinate grayish-orange to ochre calcareous siltstone and pink shale. Limestone locally contains abundant fusulinids and sparse corals. Shallow-water marine. Fusulinids suggest a Leonardian age (Magginetti and others, 1988; Stevens and Stone, 2009c). Maximum thickness about 30 m . Excludes most of the rocks previously assigned to unit 8 of Stone and others (1989), which included rocks herein assigned to the graded limestone unit
Ps7 Unit 7 (Cisuralian)—Composed primarily of light-gray, massive to thick-bedded, echinodermal limestone that locally contains diverse marine fossils including algae, sponges, fusulinids, brachiopods, bryozoans, corals, and probable hydrozoans (Rigby and others, 2004). Upper part is locally composed of dark-gray limestone that contains abundant brachiopods and is interbedded with tan to pink shale; lower part is locally composed of interbedded limestone and yellowish-brown siltstone. Shallow-water marine. Fusulinids indicate a late Wolfcampian age (Magginetti and others, 1988; Stevens and Stone, 2009c). Thickness 20 to 100 m
Ps6 Unit 6 (Cisuralian)—Brown to yellowish-brown, thin- to thick-bedded, very fine to fine-grained sandstone, calcareous sandstone, and siltstone; and medium- to dark-gray, thin- to thick-bedded bioclastic and conglomeratic limestone in which fusulinids and other marine fossils are abundant. Ammonoids are present locally. Several marker beds of bioclastic and conglomeratic limestone (blue line symbol) are mapped; these beds exhibit graded bedding and other features that indicate deep-water deposition by turbidity currents. Fusulinids indicate a late Wolfcampian age (Magginetti and others, 1988). Thickness about 500 m

Unit 5 (Cisuralian)—Dark-gray micritic limestone and subordinate brown to yellowish-brown siltstone and pink shale. Thickness about 200 m . Divided into the
following subunits:

Ps5I	Predominantly limestone
Ps5s	Predominantly siltstone and shale
Ps4	Unit 4 (Cisuralian)—Brown to yellowish-brown sandstone, calcareous sandstone, siltstone, and shale; and medium- to dark-gray, thin- to thick-bedded bioclastic and conglomeratic limestone (including marker beds shown by blue line symbol). Graded bedding and Bouma sequences indicate deep-water deposition by turbidity currents. Fusulinids, corals, and other marine fossils are abundant in limestone; the fusulinids indicate a middle Wolfcampian age (Magginetti and others, 1988). Ammonoids are present locally (Magginetti, 1983). Thickness about 600 m . Unit includes:
lcg	Limestone conglomerate-A thick bed of pink, matrix-supported limestone conglomerate interpreted as a submarine debris-flow deposit. Contains fusulinids and corals
Ps3	Unit 3 (Cisuralian)—A single thick, light- to medium-gray bed that grades from bioclastic limestone and limestone conglomerate at the base to fine-grained limestone at the top. Lower part contains abundant fusulinids and scattered coral fragments. About 20 m thick in most places. Fusulinids indicate a middle Wolfcampian age (Magginetti and others, 1988)
Ps2	Unit 2 (Cisuralian)—Upper one-third consists of light-gray calcareous siltstone, silty limestone, and, near the top, a few beds of dark-gray calcarenitic limestone; lower twothirds consists of brown, thick-bedded, very fine grained sandstone and siltstone that forms beds 40 cm to 1 m thick. Calcareous rocks in upper part contain graded bedding and Bouma sequences that indicate deep-water deposition by turbidity currents. Thickness 150 to 250 m . Possibly equivalent to basal clastic unit of the deep-water marine Darwin Canyon Formation (Stone and others, 1987) in Darwin Canyon, 20 km southeast of map area
Ps1	Unit 1 (Cisuralian)—Yellowish-brown to brown, thin-bedded calcareous siltstone and shale; subordinate medium- to dark-gray, thin- to thick-bedded bioclastic and conglomeratic limestone. Graded bedding and Bouma sequences indicate deep-water deposition by turbidity currents. Middle Wolfcampian fusulinids and corals locally present in limestone (Magginetti and others, 1988); one bed contains reworked Pennsylvanian fusulinids and conodonts. Ammonoids are present locally. Maximum exposed thickness about 380 m ; base covered. Possibly equivalent to the Osborne Canyon Formation (Stone and others, 1987) in Darwin Canyon, 20 km southeast of map area

PI Lone Pine Formation (Cisuralian)—Medium- to dark-gray and yellowish-gray, thinbedded to laminated calcareous and dolomitic mudstone; thin-bedded calcareous siltstone and very fine to fine-grained sandstone; and scattered thicker beds (20 to 80 cm) of micritic limestone and dolomite (Stone and Stevens, 1987; Swanson, 1996; Stone and others, 2000, 2004; Stevens and others, 2001). Deep-water marine. Present in western part of map area, where maximum exposed thickness is about $1,200 \mathrm{~m}$ (Swanson, 1996). Locally includes:
PII Limestone-Medium- to dark-gray, mostly thin-bedded limestone similar to rocks in upper part of Keeler Canyon Formation (PPku). Thickness about 30 m
PPa Argillite and hornfels (Cisuralian and Pennsylvanian?)—Reddish-brown-weathering, finegrained, thinly layered argillite and calc-silicate hornfels; minor limestone and marble are present locally. Stratigraphically equivalent to lower part of the Lone Pine Formation (PI) and upper part of the Keeler Canyon Formation (PPku) on lower west slope of the Inyo Mountains where these units were intruded and metamorphosed by abundant felsite sills (unit Jf)
Keeler Canyon Formation (Cisuralian to Early Pennsylvanian)—Thick unit primarily composed of medium- to dark-gray, evenly bedded limestone interpreted to have been deposited as turbidites (Merriam, 1963; Werner, 1979; Swanson, 1996; Stevens and others, 2001; Stone and others, 1989, 2004). Divided into the following subunits:

PPku	Upper part (Cisuralian to Middle Pennsylvanian)—Medium- to dark-gray, evenly bedded, bioclastic limestone and silty to sandy limestone; tan-weathering calcareous siltstone; and gray, tan, and pink calcareous mudstone. Limestone is characterized by graded bedding and other features indicating deep-water deposition by turbidity currents. Thickness as much as $1,260 \mathrm{~m}$. Includes Salt Tram and Cerro Gordo Spring members of Stevens and others (2001), which are dated as Cisuralian to Middle Pennsylvanian based on fusulinids and conodonts. In the northeastern part of the map area, unit includes some rocks previously mapped as part of the Bird Spring(?) Formation by McAllister (1956). In the Santa Rosa Hills, unit consists of rocks previously assigned to the Osborne Canyon Formation by Magginetti and others (1988) and Stone and others (1989). These rocks, which are older than the typical Osborne Canyon Formation, consist of the following units:
PPruf	Fine-grained upper unit (Cisuralian and Late Pennsylvanian)—Predominantly silty to fine-grained sandy limestone and calcareous siltstone to fine-grained sandstone. Minor coarse-grained, bioclastic limestone forms graded beds that indicate deposition by turbidity currents. Rocks near top of unit contain early Cisuralian conodonts (S.M. Ritter, written commun., 2007); rocks near base contain fusulinids considered earliest Permian in age by Magginetti and others (1988), but more recently interpreted as latest Pennsylvanian (Stevens and others, 2001; Stevens and Stone, 2007). Maximum exposed thickness about 250 m ; top covered by Quaternary alluvium
Pkuc	Coarse-grained lower unit (Late and Middle? Pennsylvanian)—Thick-bedded to massive, echinodermal and conglomeratic limestone. Contact with the underlying Tihvipah Member ($\mathbb{P k t}$) is sharp and probably disconformable. Thickness about 20 to 50 m
\mathbb{P}	Tihvipah Member (Middle and Early Pennsylvanian)—Medium- to dark-gray, thin- to thick-bedded, cherty micritic limestone, silty limestone, and tan-weathering calcareous siltstone. Limestone typically contains spherical to subspherical nodules ("golf balls") of dark-gray chert (Merriam, 1963; Stevens and others, 2001). Includes rare bioclastic beds interpreted as debris-flow deposits that suggest a relatively deep water sedimentary environment. North of Conglomerate Mesa, member contains ammonoids (advanced Proshumardites or primitive Agathiceras) of probable Middle Pennsylvanian age (B.F. Glenister, written commun., 1975). In the Santa Rosa Hills, the lower part of member (below the lowest "golf-ball" beds) contains brachiopods identified as Hustedia miseri Mather of Early Pennsylvanian age (M.A. Wilson, written commun., 1984). In most parts of the map area, unit has a maximum thickness of about 30 m and overlies the Rest Spring Shale (Mr) on the Morning Star Thrust Fault. A depositional contact with the Rest Spring Shale, along which limestone and argillite are interbedded, is locally preserved in the Fishhook hills (lower plate of Fishhook Thrust Fault). In the Santa Rosa Hills, unit is about 60 m thick, conformably overlies the Indian Springs Formation (Mi), and locally includes 10 m of brown- to orangeweathering siltstone at or near the top
Mr	Rest Spring Shale (Late Mississippian)—Dark-brown to black shale (Merriam, 1963; Stone and others, 1989, 2004). Probably deep-water marine. Locally altered to argillite or hornfels; sheared in places. Contains Late Mississippian (Chesterian) ammonoids northwest of Cerro Gordo Mine (Gordon, 1964; Titus, 2000). In addition, a sample within 10 m of the top of the formation in the Fishhook hills contains brachiopods identified as Eolissochonetes? aff. E? pseudoliratus (Easton) of Late Mississippian age (J.T. Dutro, Jr., written commun., 1986). Thickness 150 to 350 m
Mi	Indian Springs Formation (Late Mississippian)—Brown-weathering, fine-grained, planelaminated and cross-laminated quartzite, siltstone, and shale; rare light- to mediumgray, fine-grained limestone (Dunne and others, 1981). Also includes minor phosphate-pebble conglomerate (Miller, 1989), some of which Stone and others (1989) previously considered to be in the lowermost part of the Tihvipah Limestone but which we herein assign to the uppermost part of the Indian Springs Formation. Shallow-

water marine. Contains brachiopods identified as Quadratia cf. Q. hirsutiformis (Walcott) and "Avonia" subsulcata (Girty)? of Late Mississippian age (M. Gordon, Jr., and T.W. Henry, written commun., 1984). Maximum thickness about 30 m . Contact with the underlying Santa Rosa Hills Limestone (Msr) is sharp and probably disconformable (Miller, 1989)
Mmt Mexican Spring Formation and Tin Mountain Limestone, undivided (Late and Early Mississippian)—Structurally complex fault blocks of very fine grained quartzite (Mexican Spring Formation) and subordinate medium- to dark-gray limestone (Tin Mountain Limestone)
Mm Mexican Spring Formation (Late Mississippian)—Composed primarily of light-gray, brown-weathering, calcareous quartzose siltstone to very fine grained sandstone (Stevens and others, 1996; Stone and others, 2004). Upper part locally consists of light-gray, very fine grained siltstone. In Fishhook hills, includes a few graded limestone beds interpreted as turbidites (Klingman, 1987). Unit was previously mapped as siltstone member of the Perdido Formation (Stone and others, 1989). Probably deep-water marine. Thickness 40 to 100 m
Msrs Santa Rosa Hills Limestone and Stone Canyon Limestone, undivided (Late and Early Mississippian)—Structurally complex limestone outcrops near southeast corner of map area, where detailed mapping has not been conducted
Msr Santa Rosa Hills Limestone (Late and Early Mississippian)—Light- to very light gray, thick-bedded, fine- to coarse-grained echinodermal limestone (Dunne and others, 1981; Stone and others, 1989). Colonial corals abundant. Contains sparse nodular gray chert. Shallow-water marine. Thickness 80 to 100 m
MIr Leaning Rock Formation (Early Mississippian)—Dark-gray, thin- to medium-bedded limestone; black, spiculiferous chert; and minor bioclastic beds interpreted as turbidites and debris-flow deposits (Klingman, 1987; Stevens and others, 1996). Deep-water marine. Present only in the Fishhook hills, where exposed thickness is about 30 m and the base is faulted. Previously mapped as limestone member of the Perdido Formation (Stone and others, 1989)
Msc Stone Canyon Limestone (Early Mississippian)—Medium- to dark-gray, thin- to mediumbedded, fine-grained limestone, interbedded with abundant brown-weathering siliceous limestone and chert (Stevens and others, 1996). Upper 150 m of unit contains minor echinodermal limestone and locally contains brachiopods, gastropods, and corals (Klingman, 1987). Lower part contains rare graded limestone beds interpreted as turbidites and a pebbly calcareous mudstone bed interpreted as a debris-flow deposit (Klingman, 1987). Chert is particularly abundant in the basal 25 m . Relatively deep water marine. Thickness 450 to 530 m . Previously mapped as limestone member of the Perdido Formation (Stone and others, 1989)
Mt Tin Mountain Limestone (Early Mississippian)—Medium- to dark-gray or dark-bluishgray, thin- to medium-bedded mostly fine grained limestone that locally contains gray to black chert lenses and nodules (Merriam, 1963; Stone and others, 1989, 2004). Some beds contain abundant coarse echinoderm debris. Probably shallow-water marine. Thickness 25 to 180 m
DI Lost Burro Formation (Late and Middle Devonian)—Composed primarily of light- to dark-gray, thick-bedded, fine-grained limestone and marble (Merriam, 1963; Stone and others, 1989, 2004). Commonly forms steep slopes and cliffs. Thick beds typically display fine planar lamination defined by contrasting shades of gray. Characterized by locally abundant stromatoporoids and branching corals (Merriam, 1963). Uppermost few meters locally consist of vitreous light-gray quartzite. Lower part of formation includes variable amounts of light-gray dolomite and light-gray quartzite. Lower contact placed at base of a transitional zone about 30 m thick in which medium-gray limestone is interbedded with light-gray laminated dolomite similar to Hidden Valley Dolomite. Shallow-water marine. Thickness 550 to 700 m
DSh Hidden Valley Dolomite (Middle? Devonian to early Silurian)—Very light gray to light-
gray, massive, saccharoidal dolomite (Merriam, 1963; Stone and others, 2004).
Typically forms irregular, ledgy slopes. Upper part of formation locally contains a discontinuous zone of sandy dolomite and quartzite. Shallow-water marine. Thickness 450 to 580 m
SOes Ely Springs Dolomite (early Silurian and Late Ordovician)—Medium- to dark-gray, thickbedded dolomite characterized by irregular nodules and lenses of dark-gray chert as much as 15 cm long and aligned parallel to bedding (Merriam, 1963; Stone and others, 2004). Dolomite commonly has irregular mottled texture, possibly resulting from bioturbation; locally contains abundant sand-size fossil debris. Shallow-water marine. Thickness 180 to 250 m
Oe Eureka Quartzite (Middle Ordovician)—Light-tan to light-gray, vitreous, fine- to mediumgrained quartzite (Merriam, 1963; Stone and others, 2004). Present only at north edge of map area; base not exposed

APPENDIX 4

DUPLICATE ASSAY RESULTS PROVIDED BY PROPONENT

PROPRIETARY/CONFIDENTIAL INFORMATION

RECORDS CONTAINED HEREIN ARE PROPRIETARY/CONFIDENTIAL INFORMATION AND MUST BE SAFEGUARDED FROM UNAUTHORIZED DISCLOSURE

PROPRIETARY/CONFIDENTIAL INFORMATION

COVER MUST BE ATTACHED TO THE RECORD AT ALL TIMES WHEN THE RECORD IS REMOVED FROM THE FILES.

TITLE 18--CRIMES AND CRIMINAL PROCEDURE

\$ 1905 Lisclosure of contidential information generally
Whoever, being an officer or employet of the United States or of any department or ayency thereot, or agent of the Department of Justice as defined in the Antitrust Civil Process Act (15 U.S.C. 1311-1314), tublishes, divulges, discloses, or makes known in any manmer on lis any extent iwt authorized by law any information conning to him in the course of his employment or official duties or by reason of any examination or investigation made by, or return, report or record made to or filed with, such department or agency or afficer or employee thereof, which information concerns or relates to the trade secrets, processes, operations, style of work, or apparatus, or to the idenlity, confidential statistical data, amount or source of any income, profits, losses, or expenditures of any person, firm, partnership, corporation, or association; or permits any incorne return or copy thereof or any book containing any abstract or particulars thereof $t 0$ be seen or examined by any person except as provided by law; shall be tined not more than $\$ 1,000$, or imprisoned not more than one year, or both; and shall be removed from office or employment.
(June 25, 1948, ch. 645, 62 Stat. 791; Sept. 12, 1980, Pub. L. 96349 § 7(b), 94 Stat. 1158.1

ASSAY ID	FIELD ID	E_Nad27z11N	N_Nad27z11N	Elevation	Au (ppm)	Ag (ppm)	
S167008	CM292SSR						
S167024	SSR002						
S167015	SSR001						
S167017	SSRO03						
S167005	SV68SSR						
S167023	CM91SSR						
S167010	SV69SSR						
S167019	RA19SSR						
S167018	RA16SSR						
S167014	CM44OSSR						
S167021	CM53SSR						
S167020	RA003SSR						
S167013	SV51SSR						
S167022	CM442SSR						
S167009	EZ17SSR						
S167011	EZ16SSR						
S167016	DF002SSR						

Assay values provided by Silver Standard U.S. Holdings Inc., May 1, 2017. A map of general sample locations, also prepared by Silver Standard U.S. Holdings Inc., is provided on next page. Note that sample S 167015 is not within the project area.

APPENDIX 5
ASSAY REPORT FOR SAMPLES COLLECTED MAY 15-16, 2017

JOB NUMBER.: CAD002
 LAB ID: CAD17-002

July 05, 2017
PROJECT: PERDITO
CALIFORNIA STATE OFFICE-BLM
ATTN: Michael Smith
FROM: BLM-CM-1 (5136021)
2800 Cottage Way, Suite W1618
TO: BLM-CM-6 (5136026)
Sacramento CA 95825
USA

CERTIFICATE OF ANALYSIS

Final Report

Analysis Of 6 Drill Cuttingsamples

The following analytical packages were requested.
Please see our current fee schedule for elements and detection limits
ANALYSIS BY SKYLINE LABORATORIES / TUCSON
FA-01-50g Au Fire Assay - AAS (geochem) 5-3,000 ppb, 50g
FA-03 50g Au, Ag Fire Assay - Gravimetric Assay (0.03-1,000 g/Mt)
SP-19
Sample Weights

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal, excess material will be returned, or disposed of, at clients expense within 90 days of this report.Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY: Michael Jacobson

Client:	California State Office-BLM	ANALYSIS CERTIFICATE
Project:	PERDITO	CAD17-002
Sample type(s):	Drill Cutting	$05-J u l-17$
Submitted by:	Michael Smith	

RESULTS

	Analyte Symbol	Wt	Au	Au	Ag
	Unit Symbol	Kg	ppb	ppm	ppm
	Limit	0.01	5	0.03	3
	Package Code	SP-19	FA-01-50g	FA-03 50g	FA-03 50g
1	BLM-CM-1 (5136021)	3.13	188	0.20	<3
2	BLM-CM-2 (5136022)	0.96	< 5	<0.03	<3
3	BLM-CM-3 (5136023)	1.01	28	0.06	<3
4	BLM-CM-4 (5136024)	1.03	27	0.06	<3
5	BLM-CM-5 (5136025)	3.55	20	0.04	<3
6	BLM-CM-6 (5136026)	3.56	> 3000	4.20	4

Client:	California State Office-BLM	ANALYSIS CERTIFICATE
Project:	PERDITO	CAD17-002
Sample type(s):	Drill Cutting	$05-J u l-17$
Submitted by:	Michael Smith	

QUALITY CONTROL

Analyte Symbol	Au	Au	Ag
Unit Symbol	ppb	ppm	ppm
Limit	5	0.03	3
Package Code	FA-01-50g	FA-03 50g	FA-03 50g
CDN-CM-22 meas	797		
CDN-CM-22 cert	718		
CDN-GS-5P meas		4.70	117
CDN-GS-5P cert		4.780	119.0
BLM-CM-1 (5136021) orig	188	0.20	<3
BLM-CM-1 (5136021) dup	187	0.22	<3
BLM-CM-6 (5136026) orig	> 3000	4.20	4
BLM-CM-6 (5136026) dup	> 3000	3.98	5

ANALYSIS METHODS

Method Code	Description
WT	SAMPLE WEIGHT
FA-AAS	Fire Assay - AAS, SOP 410
FA-GRAV	Fire Assay Gravimetric. SOP 411,412

[^0]: ${ }^{1}$ Mineral Examiner Candidate
 ${ }^{2}$ Professional Geoscientist (Canada)
 ${ }^{3}$ Certified Mineral Examiner

[^1]: ${ }^{4}$ Confidential and proprietary information, not for public release.

